
NeuroImage 262 (2022) 119527 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

𝛽-amyloid PET harmonisation across longitudinal studies: Application to 

AIBL, ADNI and OASIS3 

Pierrick Bourgeat a , ∗ , Vincent Doréa , b , Samantha C. Burnham 

a , Tammie Benzinger c , 
Duygu Tosun 

d , g , Shenpeng Li a , Manu Goyal e , Pamela LaMontagne 

e , Liang Jin 

f , 
Christopher C Rowe 

b , f , Michael W. Weiner d , g , John C Morris h , Colin L Masters f , Jurgen Fripp 

a , 
Victor L Villemagne 

b , i , 1 , for the Alzheimer’s Disease Neuroimaging Initiative, OASIS3, and the 

AIBL research group 

a CSIRO Health and Biosecurity, Brisbane, Australia 
b Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Australia 
c Knight Alzheimer Disease Research Center, St. Louis, MO, USA 
d San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA, 
e Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, USA 
f The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia 
g Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA 
h Washington University in St. Louis, St. Louis, MO, USA, 
i Department of Psychiatry, The University of Pittsburgh, Pittsburgh, PA, USA 

a r t i c l e i n f o 

Keywords: 

Amyloid PET 
Centiloid 
Harmonisation 

a b s t r a c t 

Introduction: The Centiloid scale was developed to harmonise the quantification of 𝛽-amyloid (A 𝛽) PET images 
across tracers, scanners, and processing pipelines. However, several groups have reported differences across trac- 
ers and scanners even after centiloid conversion. In this study, we aim to evaluate the impact of different pre and 
post-processing harmonisation steps on the robustness of longitudinal Centiloid data across three large interna- 
tional cohort studies. 
Methods: All A 𝛽 PET data in AIBL ( N = 3315), ADNI ( N = 3442) and OASIS3 ( N = 1398) were quantified using 
the MRI-based Centiloid standard SPM pipeline and the PET-only pipeline CapAIBL. SUVR were converted into 
Centiloids using each tracer’s respective transform. Global A 𝛽 burden from pre-defined target cortical regions in 
Centiloid units were quantified for both raw PET scans and PET scans smoothed to a uniform 8 mm full width half 
maximum (FWHM) effective smoothness. For Florbetapir, we assessed the performance of using both the standard 
Whole Cerebellum (WCb) and a composite white matter (WM) + WCb reference region. Additionally, our recently 
proposed quantification based on Non-negative Matrix Factorisation (NMF) was applied to all spatially and SUVR 
normalised images. Correlation with clinical severity measured by the Mini-Mental State Examination (MMSE) 
and effect size, as well as tracer agreement in 11 C-PiB- 18 F-Florbetapir pairs and longitudinal consistency were 
evaluated. 
Results: The smoothing to a uniform resolution partially reduced longitudinal variability, but did not im- 
prove inter-tracer agreement, effect size or correlation with MMSE. Using a Composite reference region for 18 F- 
Florbetapir improved inter-tracer agreement, effect size, correlation with MMSE, and longitudinal consistency. 
The best results were however obtained when using the NMF method which outperformed all other quantification 
approaches in all metrics used. 
Conclusions: FWHM smoothing has limited impact on longitudinal consistency or outliers. A Composite reference 
region including subcortical WM should be used for computing both cross-sectional and longitudinal Florbetapir 
Centiloid. NMF improves Centiloid quantification on all metrics examined. 
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. Introduction 

The Centiloid (CL) scale was developed to harmonise all 𝛽− amyloid
A 𝛽) PET tracer quantification into a single universal scale ( Klunk et al.,
015 ). In this scale, CL = 0 is anchored to group average of young
ealthy controls, and CL = 100 to group average of mild Alzheimer’s
isease (AD) patients. While the Centiloid scale was originally only
alibrated for 11 C-PiB (PiB), it describes a framework where different
racers and methods could be calibrated. The prescribed quantification
ipeline based on SPM has since been calibrated for all F-18 A 𝛽 trac-
rs, namely 18 F-Florebetaben (FBB) ( Rowe et al., 2017 ), 18 F-NAV4694
NAV) ( Rowe et al., 2016 ), 18 F-Flutemetamol (FLUTE) ( Battle et al.,
018 ) and 18 F-Florbetapir (FBP) ( Navitsky et al., 2016 ). These data were
hen made publicly available 1 so that other quantification approaches
ould be calibrated. This was later performed using different approaches
ncluding a number of MR-based methods such as PMOD ( Battle et al.,
018 ; Hanseeuw et al., 2021 ), FSL ( Battle et al., 2018 ), FreeSurfer
 Royse et al., 2021 ; Su et al., 2018 ), and SPM5 ( Schwarz et al., 2018 ),
s well as PET-only methods including CapAIBL ( Bourgeat et al., 2018 ).
e have also seen non-traditional quantification methods based on im-

ge decomposition being also calibrated into Centiloids ( Bourgeat et al.,
021 ). 

While the Centiloid scale provides a good framework for harmon-
sing across tracers and processing pipelines, there could still be sig-
ificant residual non-biological variability, which could be attributable
o heterogeneity in data collection, preprocessing framework or prepro-
essing steps. Such heterogeneity could hide subtle longitudinal changes
hich are important to improve our understanding of the progression of
D and its risk factors. These could also hamper the detection of small
hanges in anti-A 𝛽 therapy and clinical trials. It is therefore important to
valuate existing quantification and harmonisation strategies in a large
ulti-centre datasets to quantify their impact on longitudinal variability

f A 𝛽 over time. 
One of the main source of variability is the use of different PET scan-

ers and reconstruction methods, which is inevitable in multi-site stud-
es such as AIBL or ADNI. Differences in scanner geometry, underlying
echnology and reconstruction algorithms can lead to large differences
n quantification ( Aide et al., 2017 ; Joshi et al., 2009 ). Early work on
canner harmonisation was led by the work of Joshi et al. (2009) based
n the scan of a Hoffman phantom used to estimate the amount of
moothing required to bring all the data to a uniform resolution. This
ethod has been employed in ADNI as part of their standard pre-
rocessing pipeline for all PET images and is often included in clinical
tudies and trials. While the initial validation was performed on FDG, its
mpact on A 𝛽 image quantification acquired on different scanners has
ot been fully assessed. 

The choice of reference region can also impact the reliability of A 𝛽

uantification. While the whole cerebellum (WCb) is the prescribed ref-
rence region as it was shown to lead to the highest effect size between
oung controls and mild AD, its stability over time for each tracer has
ot been fully assessed. Previous work using the standardised uptake
atio (SUVR) has shown that WCb is suboptimal for FBP in longitu-
inal studies ( Landau et al., 2015 ) and a composite region of subcor-
ical white matter plus WCb (WM + WCb) led to improved longitudi-
al consistency and a rate of increase more congruous with quantifica-
ion obtained using PiB. While including WM in the reference region
s believed to improve quantification by counteracting the effects of
he WM spilling into the cortical target regions ( López-González et al.,
019 ), there remains concerns with including WM in a reference due
ts non-specific binding being significantly different from the cortex GM
 Fodero-Tavoletti et al., 2009 ) and its lower tracer uptake in regions of
M injuries ( Pietroboni et al., 2022 ) and demyelination ( Moscoso et al.,

022 ). This composite reference region has been widely used for SUVR
1 http://www.gaain.org/centiloid-project . 
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uantification, but has only recently been cross-sectionally evaluated
or Centiloids ( Royse et al., 2021 ). 

Lastly, novel quantification methods which do not rely on prede-
ned regions of interest have been proposed. These methods use im-
ge decomposition to separate specific from non-specific binding, as
art of the A 𝛽 quantification. These methods all show good correla-
ion with standard CL or SUVR, while improving the separation be-
ween Healthy Controls (HC) and AD patients ( Pegueroles et al., 2021 ;

hittington and Gunn, 2019 ), increasing the correlation with cogni-
ive measures ( Liu et al., 2021 ) and reducing longitudinal variabil-
ty ( Bourgeat et al., 2021 ; Whittington and Gunn, 2019 ). These meth-
ds include Non-negative Matrix Factorisation (NMF) ( Bourgeat et al.,
021 ), AmyQ ( Pegueroles et al., 2021 ) and A 𝛽-index ( Leuzy et al., 2020 )
hich both rely on a PCA decomposition, Amyloid Load (Amyloid IQ )
 Whittington and Gunn, 2019 ) which uses an image-base regression,
nd a more recent deep-learning based method which learns to separate
he specific from the non-specific binding based on A 𝛽- scans ( Liu et al.,
021 ). To our knowledge, our previous work on NMF was the only ap-
roach to explicitly enforce consistency between the decomposition of
ach tracer, and attempt to implicitly reduce the variability due to the
se of different scanners. Moreover, it was validated on all five A 𝛽 trac-
rs currently in use and assessed in terms of longitudinal consistency in
he multi-tracer/multi-scanner AIBL study. The validation however did
ot assess the effect of the uniform resolution, the importance of the
hoice in the reference region or its effectiveness in other studies. 

Other work on PET harmonisation includes a recent deep learning
pproach ( Shah et al., 2022 ) which allows to transform an image from
n Amyloid tracer (FBP) to another Amyloid tracer (PiB). While this
pproach showed promising results, a major limitation is the need for
 large number of paired scans to train the model ( N = 80 used in the
aper). The ComBat harmonisation method which is widely used in MR
canner harmonisation has also been recently used for FDG PET SUV
armonisation ( Orlhac et al., 2022 ). However, to our knowledge, it has
ot been evaluated for Amyloid PET harmonisation. 

In this work, we aim to assess the impact of smoothing to a uniform
esolution, choice of the reference region and choice of the quantifica-
ion method on the harmonization of the A 𝛽 PET data in three large
ongitudinal cohorts, namely AIBL, ADNI and OASIS3 as part of the
lzheimer’s Dementia Onset and Progression in International Cohorts

ADOPIC) study. We first evaluate the impact of smoothing the PET data
o a uniform 8mm resolution. We then look at the stability of the ref-
rence region for each tracer and evaluate the impact of the choice of
eference region for FBP. Lastly, we compare the quantification using
he standard SPM8 pipeline and the more advanced NMF quantification
pproach. Since not all subjects can undergo an MRI, we also evaluated
he impact of all these harmonisation strategies on our PET-only quan-
ification method through CapAIBL, and its NMF extension on the same
ubset of subjects. We first compared the corresponding Centiloid values
ross-sectionally to evaluate their impact on the quantification, before
valuating their consistency in longitudinal data. 

. Methods 

.1. Data 

Data used in this study combined three of the largest and publicly
vailable imaging studies in AD, namely AIBL ( Ellis et al., 2009 ), ADNI
 Petersen et al., 2010 ) and OASIS3 ( LaMontagne et al., 2019 ). We ex-
racted all A 𝛽 PET data and corresponding T1W MRI acquired before
he 31st of December 2020 in AIBL (N images = 3315, N subjects = 1345),
DNI (N images = 3516, N subjects = 1648) and OASIS3 (N images = 1398,
 subjects = 748) for a total of 8229 PET scans from 3741 participants.
IBL A 𝛽 PET scans were acquired using one of five tracers (PiB, FBP,
BB, NAV, FLUTE), ADNI used three (PiB, FBP, FBB) and OASIS3 used
wo (PiB, FBP). The breakdown of the tracer’s distribution is given in
able 1 , showing that PIB is the most prevalent tracer in AIBL and OA-

http://www.gaain.org/centiloid-project


P. Bourgeat, V. Doré, S.C. Burnham et al. NeuroImage 262 (2022) 119527 

Table 1 

Basic demographics and distribution of the number of scans per tracers used in each study. 

AIBL ADNI OASIS 

Number of scans per tracer PIB/FBP/FBB/NAV/FLUTE 1307/627/14/849/518 226/2901/389/-/- 958/440/-/-/- 
Subjects with change of tracer 41.1% 2.9% 34.0% 

Subjects with change of scanner 37.2% 18.2% 41.8% 

Number of scanner models 4 27 3 
Diagnosis at baseline (%) HC/MCI/AD/Others 66/19/13/2 40/44/16/1 83/0/11/6 
Age at baseline (Mean [Std]) HC/MCI/AD 72/73/74 [6/8/8] 73/73/75 [7/8/8] 69/-/77 [9/-/8] 
MMSE at baseline (Mean [Std]) HC/MCI/AD 28/26/22 [1/2/5] 29/28/23 [1/2/3] 29/-/25 [1/-/4] 
Number of timepoints (Mean [Std]) HC/MCI/AD 2.8/2.1/1.6 [1.7/1.4/0.9] 2.3/2.3/1.3 [1.3/1.4/0.5] 1.9/-/1.1 [0.8/-/0.3] 
Length of follow-up (Mean [Std]) in years 4.2/3.7/3.4 [2.9/2.5/2.1] 4.2/3.7/3.4 [2.4/2.3/2.2] 4.6/-/4.7 [2.3/-/2.5] 
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IS, whereas FBP is the most used tracer in ADNI. AIBL has the highest
roportion of subjects who were scanned with 2 of more tracers (41%),
ollowed by OASIS (34%) and ADNI (3%). OASIS has the highest pro-
ortion of subjects who were scanned on 2 or more scanners (42%),
ollowed by AIBL (37%) and ADNI (18%). When only considering sub-
ects with 3 or more timepoints, OASIS has the highest proportion of
ubjects who were scanned with 2 or more tracers (79%), followed by
IBL (69%) and ADNI (9%). Similarly, OASIS has the highest proportion
f subjects who were scanned on 2 or more scanners (96%), followed by
IBL (57%) and ADNI (42%). PET scans in AIBL were performed using
 different scanners models, ADNI used 27 and OASIS used 3. 

Both AIBL and OASIS had a higher proportion of healthy controls at
aseline, whereas ADNI had similar proportion of HC and MCI patients.
ASIS has no MCI patients. There was no significant difference in Age
t baseline in any diagnostic group between AIBL and ADNI. The HC in
ASIS were significantly younger, and AD patients significantly older.
here were significant differences in MMSE between subjects in each of
he diagnostics groups for each of the 3 studies. The number of imaging
imepoints was generally higher in the HC and MCI than in the AD group.

Data used in the preparation of this article were partly obtained
rom the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
artnership, led by Principal Investigator Michael W. Weiner, MD. The
rimary goal of ADNI has been to test whether serial magnetic reso-
ance imaging (MRI), positron emission tomography (PET), other bi-
logical markers, and clinical and neuropsychological assessment can
e combined to measure the progression of mild cognitive impairment
MCI) and early Alzheimer’s disease (AD). For up-to-date information,
ee www.adni-info.org. 

In OASIS, 120 subjects were scanned using both PiB and FBP within
 months (median = 8 days, max = 6.5months). Since we do not expect
ignificant increase of A 𝛽 retention during this timeframe, this dataset
as used to assess the pair-wise correlation between PiB CL and FBP
L. It should also be noted that most pairs were acquired on different
canners, as one of the PET imaging sessions was combined with the MRI
isit by using the PET-MRI scanner in order to reduce participant burden
nd minimize missing data due to missed visits. FBP scans were acquired
n 2 scanners (110 on BioGraph mMR, 10 on BioGraph 40) and PiB on
 (1 on BioGraph mMR, 117 on BioGraph 40 and 2 on ECAT HRplus).
herefore, while we only refer to these 2 datasets by the tracer used in
he rest of the manuscript, any difference measured will contain both
 tracer and scanner effect, which cannot be easily isolated from each
ther. For the longitudinal analysis, having scans in such close proxim-
ty will artificially increase the error metrics, and is not representative
f the actual timespan between different scans of the same subject in
ongitudinal studies. Therefore, for the longitudinal analysis, only one
f each scan pairs was used. However, as we sought to evaluate our
ethods in heterogeneous datasets, for each OASIS subject with 2 trac-

rs at the same timepoint, the tracer that was the least represented in all
imepoints for a given participant was kept, therefore enforcing a larger
ariability in tracers used for each subject. 
3 
.2. Image analysis 

We evaluated two quantification methods, the SPM-based quantifi-
ation pipeline, as prescribed by the Centiloid consortium ( Klunk et al.,
015 ), and CapAIBL, a PET-only quantification method which has been
reviously calibrated to provide Centiloids ( Bourgeat et al., 2018 ). In
he SPM-based quantification method, each T1W MR image is affinely
egistered to a T1 template. It is then segmented into GM, WM and CSF
hrough an iterative expectation maximisation algorithm, which also
ncludes bias field correction, and non-rigid alignment to the template.
he corresponding PET image is then rigidly aligned to the T1W im-
ge and non-rigidly deformed using the T1 deformation field. Quantifi-
ation of the PET is performed using the Centiloid masks in the nor-
alised space ( Klunk et al., 2015 ). With CapAIBL, the PET image is first

ffinely registered to a mean PET template. An adaptive PiB-PET tem-
late is optimised to match the pattern of A 𝛽 retention in the image
 Bourgeat et al., 2015 ). The optimal template is then used as a target
or the non-rigid registration. Similar to SPM framework, the quantifi-
ation is performed using the Centiloid masks in the normalised space.
L SPM and CL Cap will be used to refer to the Centiloids computed using
he SPM pipeline, or the CapAIBL one. 

To further test the stability of each method when using different PET
canners, we evaluate their performances when using raw PET images,
ompared to PET images which have been smoothed to a uniform point
pread function. This is achieved using the methodology of Joshi et al.
2009 ), which is used in ADNI as part of their standard pre-processing
ipeline. It requires the acquisition of a Hoffman phantom on each
ET scanner. The scans are co-registered to a digital version of Hoff-
an phantom, which is smoothed using a 8 mm FWHM Gaussian filter.
ach co-registered scan is smoothed with Gaussian filters of increasing
WHM. For each scanner, the FWHM which minimises the difference be-
ween the smoothed physical Hoffman and the smoothed digital one is
hen used to smooth all PET scans acquired on this scanner. This proce-
ure was performed for both AIBL and OASIS using Hoffman phantoms
canned on each of the scanners used in each study. For ADNI, the pre-
rocessed PET scans which follow the exact same preprocessing and are
vailable on the LONI website were used. Raw CL and Uni CL will be used
o refer to the CL computed using Raw images and images smoothed to
 uniform resolution, respectively. 

To assess the stability of the reference region, the subset of PET im-
ges from AIBL and ADNI which had valid SUV information in their
ICOM files were scaled into SUV, so that their reference region mean
UV could be computed (We did not have access to the raw DICOMs for
ASIS, and could not use them in this part of the analysis). To assess

he impact of the choice of reference region for the FBP scans, two ref-
rence regions were evaluated, the whole cerebellum, and a composite
eference region, as proposed by Landau et al. (2015 ). The composite
eference region includes subcortical white matter as well as the whole
erebellum. To minimize the contribution from voxels with the partial
olume effects at the grey-white matter boundary, the white matter seg-
entation is first smoothed using an 8 mm Gaussian kernel and then



P. Bourgeat, V. Doré, S.C. Burnham et al. NeuroImage 262 (2022) 119527 

t  

a  

w  

t  

c  

m  

m  

w
w  

t
 

(  

e  

b  

d  

d  

o  

f  

t  

W  

i  

m  

s  

t  

C
 

s  

C  

t  

s  

w  

U
 

a

2

2

 

q  

s  

e  

f  

d  

a  

f  

s  

i  

o
 

t  

r  

m  

(
 

s  

o  

a
 

p

2

 

t  

o  

B  

fi  

w  

a  

A  

s  

t  

s  

u  

f  

2  

n  

b
 

(  

I

3

3

3

3

 

(  

7  

[
 

m  

f  

t  

C  

r  

c  

C  

C
 

e  

t  

a  

v  

u  

i  

s  

c  

b  

s  

t  

b
 

b  

m  

T  

u  

I

3

 

p  

t  

c  

(  

s  

l  
hresholded at 70% of its maximum to erode the white matter mask
way from grey matter ( Landau et al., 2015 ), before being combined
ith the Centiloid whole cerebellum mask. For SPM, the WM segmenta-

ion from each corresponding T1W MR image was used to compute the
omposite mask. In CapAIBL, the WM segmentation of the T1 template,
atching the PET template was used to build the composite mask. This
eans that for SPM, each scan used a subject-specific composite mask,
hereas in CapAIBL, all scans used the same mask. CL WCb and CL Comp 
ill be used to refer to the CL computed using the whole cerebellum as

he reference region, or the composite WM region. 
Lastly, the recently proposed NMF-based Centiloid quantification

 Bourgeat et al., 2021 ) was evaluated. It relies on a decomposition of
ach PET image into its specific and non-specific binding components
ased on a 2 components NMF decomposition. The model used for the
ecomposition were built on the Centiloid calibration dataset, and the
ecomposition was performed so that the specific binding components
f each tracer would match in the calibration paired data, therefore en-
orcing consistency across tracers. The method requires the PET images
o be spatially normalised to a standard space, and SUVR normalised.

hile we’ve previously calibrated using SPM normalised images us-
ng WCb, we have here recalibrated the method for FBP images nor-
alised using the Composite reference region, as well as PET images

patially normalised using the PET-only method CapAIBL. We will refer
o the SPM and CapAIBL based NMF quantification as CL SPM + NMF and
L CapAIBL + NMF . 

Each pipeline and reference region were calibrated to the Centiloid
cale following the level-2 calibration method described in the original
entiloid paper ( Klunk et al., 2015 ). Since the original Centiloid calibra-
ion data from GAAIN do not include Hoffman phantoms, the calibration
cans could not be smoothed to a uniform resolution. Therefore, there
as no difference in the equations used to convert SUVR into Raw CL and

ni CL. Unless specified otherwise, all analysis were performed using all
vailable data from all 3 studies. 

.3. Statistical analysis 

.3.1. Cross-sectional analysis 

The effect of the uniform resolution smoothing on the Centiloid
uantification compared to the raw data was first assessed cross-
ectionally within each pipeline by looking at any bias in the linear
quation between the CL values before and after smoothing to a uni-
orm resolution and their correlation assessed using the coefficient of
etermination. The stability of the reference region SUV for each tracer
gainst time was evaluated using a t-test, while controlling for the ef-
ect of multiple scanners. The impact of the reference region on cross-
ectional Centiloid value was similarly assessed by looking at any bias
n the linear equation and the correlation assessed using the coefficient
f determination and ICC. 

Using the paired data in OASIS, we also assessed the correlation be-
ween PIB and FBP using the coefficient of determination, and the cor-
elation equation to identify any bias. Cohen’s Kappa score was used to
easure the inter-tracer agreement (PiB vs FBP) when classifying high

A 𝛽+ ) and low (A 𝛽-) scans based on a 20CL threshold. 
To verify that the derived CL values are biologically meaningful, the

trength of its correlation with MMSE was assessed using the coefficient
f determination. The effect size between all baseline HC and AD was
ssessed using Cohen’s d . 

For all inter-tracer and pre-processing comparison, ICC was also com-
uted to assess agreement. 

.3.2. Longitudinal analysis 

For each subject, the rate of change for each method was defined as
he slope of the CL value compared to the participant’s age at the time
f the scan and was reported in CL/year. Following the analysis done in
ourgeat et al. (2021 ), the longitudinal consistency (which we here de-
ne as the expectation that all timepoints follow a similar slope/trend)
4 
as first assessed using a linear regression of all available timepoints
nd measuring the fitting error, assuming the working hypothesis that
 𝛽 accumulation is linear for each subject over the time-course of the
tudy. We also measured the number of outliers, defined as successive
imepoints having changes in CL/year larger or smaller than what is ob-
erved in 95% of the cases when a single tracer/single scanner is being
sed. The thresholds were computed using all 3 cohorts, but separately
or the A 𝛽- and A 𝛽+ groups. A 𝛽+ was defined based on a threshold of
0 CL on the SPM CL WCb Raw at baseline. Lastly, given that there is
o expectations of linearity between the rate of CL change compared to
aseline CL, their correlation was measured using the Spearman 𝜌. 

Linear fit and correlations were computed using python’s scipy
1.5.4). Cohen’s Kappa was computed using python’s sklearn (0.22.2).
CC was computed using python’s pingouin (0.3.12). 

. Results 

.1. Studies characteristics 

Studies and population characteristics are presented in Table 1 . 

.2. Cross-sectional comparison 

.2.1. FWHM smoothing 

The FWHM smoothing kernel (in mm) for each study was as follow
XY: mean [min,max], Z: mean [min,max]): AIBL (XY: 4.9 [0.5,7.0], Z:
.1 [4.0,8.0]), ADNI (XY: 4.5 [2.0,6.0], Z: 3.9 [2.0,6.0]), OASIS (XY: 6.2
5.5,6.5], Z: 6.8 [6.5,7.0]). 

The ICC and R 

2 between Raw CL and Uni CL for the different analysis
ethods is presented in Fig. 1 . The WCb was used as the reference region

or all analysis. The ICC between Raw CL and Uni CL was high for all quan-
ification methods, and comparable between SPM (ICC = 0.999) and
apAIBL (ICC = 0.995). Using the FWHM smoothing led to an average
eduction of CL by 3% when using SPM and 5% when using SPM + NMF
ompared to using Raw CL SPM . When using CapAIBL, the reduction in
L was more pronounced with 8% with CapAIBL alone, and 7% with
apAIBL + NMF compared to using Raw CL CapAIBL . 

Since the amplitude of FWHM smoothing is scanner specific, we also
xamined the variance in correction across scanners for each quantifica-
ion method, with a smaller variance indicating that the correction has
 similar effect on the quantification across all scanners, and a larger
ariance indicating a large range of effects across scanners. The individ-
al correlations segregated by scanners for each cohort are illustrated
n Suppl. Fig. 1. The variance of slopes between Raw CL and Uni CL across
canners was significantly smaller ( p < 0.02) when using SPM (2.5 ∗ 10 − 4 )
ompared to CapAIBL (3.2 ∗ 10 − 4 ), meaning that SPM had less variability
etween Raw CL and Uni CL across scanners. The variance of slopes was
ignificantly higher ( p < 0.007) using SPM NMF (8.4 ∗ 10 − 4 ) compared
o SPM. There was no significant difference in the variance of slopes
etween CapAIBL and CapAIBL NMF. 

Lastly, we checked if the smoothing could improve the concordance
etween different methods, especially given that the PET-only method
ight be more sensitive to the image appearance than MR-based one.
here was however no change in the CL SPM and CL CapAIBL agreement
sing raw data, or uniformly smoothed ones, with both yielding an
CC = 0.987. 

.3. Reference region 

To evaluate the temporal stability of the reference regions, we com-
uted the correlation between the SUV in the reference region and age in
he subset of AIBL and ADNI data with valid SUVs. In AIBL, there was no
orrelation between the WCb SUV and the subject’s age when using PiB
 p = 0.56), NAV ( p = 0.30) or FLUTE ( p = 0.89). There was however a
ignificant negative correlation when using FBP ( p = 0.049). This corre-
ation disappeared when using the composite WM + WCb SUV ( p = 0.22).
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Fig. 1. Scatter plot of the Centiloid computed 
using the raw data ( Raw CL) compared to the 
Centiloid computed using images smoothed to 
a uniform 8mm resolution ( Uni CL) quantified 
using SPM, CapAIBL and their NMF exten- 
sion. This shows the limited impact of uniform 

smoothing on CL quantification. 
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n ADNI, there was no correlation between the WCb SUV and the sub-
ect’s age in FBB ( p = 0.88), but there was a significant negative corre-
ation in FBP ( p = 4 ∗ 10 − 10 ). The correlation was reduced but remained
ignificant when using the composite WM + WCb SUV ( p = 3 ∗ 10 − 9 ). The
catter plots of SUV vs age are presented in Suppl. Fig. 2 for WCb and
uppl. Fig. 3 for the composite WM + WCb. 

The correlation between the CL WCb and CL Comp for the different anal-
sis methods is presented in Fig. 2 . The uniform images (8mm FWHM)
ere used for the analysis. While the ICC between CL WCb and CL Comp 
as high for all analysis methods, the agreement was much higher

ICC > 0.98) when using NMF, meaning that the NMF-based quantifica-
ion appears to be more robust to the choice of reference regions. 

.4. Head-to-head PiB-FBP comparison 

The scatter plots comparing the PiB CL and their matching FBP CL
n the OASIS pairs are presented in Fig. 3 and the ICC between PIB and
BP for each method is presented in suppl Table 1. It shows a strong
ias when using SPM or CapAIBL, with FPB CL being overestimated
ompared to PiB CL. Using the NMF reduces the bias and improves the
greement with a higher ICC. The agreement between PiB and FBP for
he classification into a A 𝛽+ ( ≥ 20CL) and A 𝛽- scan ( < 20CL) was as-
essed using the Cohen’s Kappa coefficient for each method and pre-
ented in Table 2 . Using the SPM and CapAIBL quantification methods,
here was a greater agreement between PiB and FBP when FBP was nor-
alised using the composite WM + WCb reference region. Using the uni-

orm resolution smoothing, however, did not improve the agreement
ompared to using the raw data (shown in Suppl Fig. 4). The highest
greements were obtained using the NMF approach, which were sys-
ematically higher than their baseline methods. When using NMF, the
5 
hoice of reference region had negligible effects on the agreement be-
ween PiB and FBP. 

.5. Correlation with MMSE and effect size 

Using all subjects at baseline, we measured the correlation of CL
ith MMSE using the coefficient of determination ( Table 3 ). There was
o clear trend showing that the uniform smoothing improved the cor-
elation. The correlation was however much stronger when using the
omposite WM + WCb reference region, and the NMF systematically im-
roved the correlation compared to its baseline method. Similarly, we
lso computed the effect size between HC and AD at baseline ( Table 4 ),
eading to the same findings. Similar trends were observed when the
nalysis was conducted in each cohort separately (supplementary Ta-
les 2 and 3). 

.6. Longitudinal comparison 

.6.1. Fitting error and number of outliers 

In the A 𝛽-, 95% of the changes between consecutive pairs of scans
cquired on the same scanner and using the same tracer were between
6.33 and 8CL/Y. In the A 𝛽+ , those were between –16.6 and 20.13CL/Y.

The percentage of outliers in the whole population, including partic-
pants with a change of scanner and/or tracer, showing changes outside
hat range in the A 𝛽- and A 𝛽+ are presented in Tables 5 and 6 , respec-
ively. For all quantification methods, using images smoothed to a uni-
orm 8mm resolution led to a systematic reduction of outliers compared
o using the raw data. With both SPM and CapAIBL, using the composite

M + WCb reference region for FBP also led to a systematic reduction
f outliers compared to using the WCb. This was also the case in the
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Fig. 2. Scatter plot of FBP CL WCb and CL Comp 

quantified using SPM, CapAIBL and their NMF 
extension. 

Fig. 3. Scatter plots of the PiB-FBP CL pairs, using different preprocessing and quantification methods. 

6 
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Table 2 

Cohen’s Kappa score for the inter-tracer (PiB vs FBP) agreement for classifying A 𝛽+ and A 𝛽- scans based on a 20CL threshold. Higher 
Cohen’s Kappa means greater agreement. For each quantification method, the pre-processing leading to the highest agreement is 
shown as a bold value. The overall best agreement is underlined. 

Preprocessing Quantification method 

Uniform FWHM Reference Region SPM SPM + NMF CapAIBL CapAIBL + NMF 
Raw CL WCb No WCb 0.73 0.89 0.69 0.88 
Uni CL WCb Yes WCb 0.68 0.94 0.74 0.89 
Raw CL Comp No Composite 0.87 0.91 0.85 0.91 
Uni CL Comp Yes Composite 0.78 0.92 0.81 0.85 

Table 3 

Correlation of CL with MMSE. For each quantification method, the pre-processing method leading to the highest R 2 is shown in bold. 
The overall highest R 2 is underlined. 

Preprocessing Quantification method 

Uniform FWHM Reference Region SPM SPM + NMF CapAIBL CapAIBL + NMF 
Raw CL WCb No WCb 0.191 0.226 0.195 0.234 
Uni CL WCb Yes WCb 0.188 0.225 0.198 0.235 
Raw CL Comp No Composite 0.218 0.236 0.229 0.238 
Uni CL Comp Yes Composite 0.216 0.235 0.232 0.237 

Table 4 

Effect-size (ES) between HC and AD at baseline based on the CL value. For each quantification method, the pre-processing method 
leading to the highest effect size is shown in bold. The overall highest effect size is underlined. 

Preprocessing Quantification method 

Uniform FWHM Reference Region SPM SPM + NMF CapAIBL CapAIBL + NMF 
Raw CL WCb No WCb 1.654 1.824 1.653 1.837 
Uni CL WCb Yes WCb 1.635 1.807 1.65 1.836 
Raw CL Comp No Composite 1.826 1.876 1.839 1.849 
Uni CL Comp Yes Composite 1.801 1.858 1.829 1.841 

Table 5 

Percentage of outliers in the A 𝛽- group with changes smaller than -6.33 CL/Y or larger than 8 CL/Y. For each quantification method, 
the pre-processing leading to the smallest number of outliers is shown as a bold value. The overall lowest percentage of outliers is 
underlined. 

Preprocessing Quantification method 

Uniform FWHM Reference Region (FBP) SPM SPM + NMF CapAIBL CapAIBL + NMF 
Raw CL WCb No WCb 6.43 4.39 6.90 2.75 
Uni CL WCb Yes WCb 6.04 3.45 5.41 2.04 
Raw CL Comp No Composite 7.57 6.31 6.59 4.63 
Uni CL Comp Yes Composite 5.22 5.18 3.92 4.75 

Table 6 

Percentage of outliers in the A 𝛽+ group with changes smaller than –16.6 CL/Y or larger than 20.13CL/Y. For each quantification 
method, the pre-processing leading to the smallest number of outliers is shown as a bold value. The overall lowest percentage of 
outliers is underlined. 

Preprocessing Quantification method 

Uniform FWHM Reference Region (FBP) SPM SPM + NMF CapAIBL CapAIBL + NMF 
Raw CL WCb No WCb 6.41 2.07 7.69 2.78 
Uni CL WCb Yes WCb 5.70 1.64 5.41 1.99 
Raw CL Comp No Composite 2.64 1.64 3.56 1.92 
Uni CL Comp Yes Composite 2.21 1.21 2.56 1.35 
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c  
 𝛽+ group when using the NMF. However, in the A 𝛽- group, the NMF
ave the lowest number of outliers when the WCb was used. Overall,
sing the NMF led to a systematic reduction in the number of outliers
n both groups, compared to their baseline method. Similar results were
btained with the mean standard error of the estimated slopes, with ta-
les shown in Suppl. Tables 4 and 5. This reduction of outliers when
sing the NMF is illustrated in Suppl. Figs. 5 and 6 showing the longi-
7 
udinal plots of Centiloid value against age for both SPM and CapAIBL,
espectively. 

.7. Rate of change 

The rate of CL change vs baseline CL for each method, as well as the
orresponding Spearman correlation coefficients are shown in Fig. 4 .
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Fig. 4. Rate of change in CL/year against baseline CL value for CL measured using different preprocessing and quantification methods. 
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he effect of the uniform smoothing on the correlation was negligeable
Suppl. Fig.7). The correlation with SPM and CapAIBL were stronger
sing the composite WM + WCb reference region for FBP, compared to
sing WCb. The correlations were the strongest using NMF, regardless
f the pre-processing method or quantification pipeline used. The corre-
ation using CapAIBL and CapAIBL + NMF were generally stronger than
hose obtained using SPM and SPM + NMF. 

. Discussion 

In this paper, we have presented a comparison of different pre- and
ost-processing techniques applied for improving CL harmonisation. We
ssessed the use of FWHM resolution which was originally proposed to
educe inter-scanner differences in multi-centre studies, and later im-
lemented in the default ADNI pre-processing pipeline. We then com-
ared the use of different reference regions for FBP, deviating from the
tandard Centiloid protocol, but more in line with studies showing that
he prescribed WCb reference region for Centiloid might not be ade-
uate to observe longitudinal changes. These different pre-processing
nd normalisation were assessed with both the recommended SPM
ipeline, and a PET-only quantification method that we previously cali-
rated to Centiloids. Lastly, our recently proposed NMF method, which
as previously shown to improve longitudinal consistency in AIBL
as evaluated on both pipelines. We will discuss each of these assess-
ents, before providing overall recommendations and limitations of this

tudy. 

.1. Uniform FWHM resolution 

Smoothing to a uniform FWHM resolution was originally proposed
or FDG ( Joshi et al., 2009 ). While the authors showed a 20–50% re-
uction of variability across scanners on phantom data, the results on
eal subjects were a lot more modest, with only 15–25% reduction of
ariability. Given that we lack same tracer, head-to-head comparison
n different scanners, it can be hard to assess how much improvement
8 
he smoothing brings to the CL quantification. It is however useful to
uantify the effect of the smoothing to uniform resolution on the CL
uantification. In our cross-sectional analysis, the effect was modest,
ith only 3% difference with SPM and 8% with CapAIBL. The differ-

nce between the 2 methods can be explained by the method used for
he spatial normalisation. With SPM, the extra smoothing will have lit-
le to no impact on the accuracy of the co-registration between the PET
nd MRI, and therefore, most of the differences compared to using the
aw data can be attributed to the change in signal intensity on the PET
ue to the extra smoothing. Since CapAIBL uses the PET directly for the
on-linear registration to the template, it is more susceptible to biases
ue to changes in the PET appearance. As a result, the larger differ-
nce between using the raw and smoothed data can be attributed to
oth different errors in the registration as well as the differences in PET
ntensity. This was further illustrated by looking at the variance of the
lopes between different scanners when comparing the CL computed be-
ore and after smoothing to uniform resolution for a given method. This
ariance was significantly higher with CapAIBL than SPM, indicating
hat when using CapAIBL, the CL quantification using raw data had a
ot more variability across scanners compared to using raw data with
PM. This would indicate that PET-only quantification methods, such
s CapAIBL could benefit from the FWHM smoothing to reduce vari-
bility in the spatial normalisation, whereas MR-based techniques, such
s SPM, might not get as much of a benefit from it. It should however
e noted that we did not observe any improvement in the agreement
etween SPM and CapAIBL when using raw or smoothed data, so while
he smoothing had a greater effect on CapAIBL, it did not necessarily
ranslate into a more accurate quantification. 

In the head-to-head PIB-FBP comparison where 2 different scanners
re used, the smoothing to a uniform resolution did not improve the
greement between the tracers, with similar ICC and bias obtained when
omparing the raw PiB to the raw FBP, and the uniform PiB and uni-
orm FBP. It did however modify the agreement between the two trac-
rs for classifying A 𝛽+ from A 𝛽- scans based on a 20CL threshold, al-
hough there was no systematic trend, with some quantification meth-
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ds leading to better agreement using the raw data. It should be noted
hat this head-to-head dataset is not optimal to evaluate the effect of
moothing to a uniform resolution, given that the 2 scanners use differ-
nt technology, and MR-based attenuation has been previously shown
o lead to an underestimation of SUVR compared to using a CT-based
ttenuation map ( Su et al., 2016 ), which is independent of the scanner
esolution. 

The correlation with MMSE and effect size between HC and AD did
ot improve with the uniform smoothing, and while the differences were
mall, the results were often worse compared to using the raw data. It is
herefore possible that the extra smoothing might reduce small changes,
esulting in weaker correlations. 

In the longitudinal analysis, where 56% of the subjects were scanned
ith 2 or more scanners, while the uniform resolution led to a reduction

n both the number of outliers and in the standard error of the estimated
lopes, it did not increase the correlation between the rate of change and
he baseline CL. This is likely because we only used subjects with three
r more timepoints in this analysis, with the linear regression, used to
ompute the rate of change, smoothing out the effects of outliers. The
moothing might have had a bigger impact if we had included subjects
ith only two timepoints. 

.2. Reference region 

The correlation of the WCb SUV with age revealed that the WCb was
table over time for PiB, NAV, FBB and FLUTE, and therefore suitable
o be used as a reference region. It also confirmed that it was not sta-
le for FBP. The composite WM + WCb, however, was stable for FBP in
IBL. In ADNI, while it reduced the strength of the correlation, it re-
ained significantly correlated. The disparity of results between AIBL

nd ADNI could be explained by the number of scanners being used.
hile AIBL used only 3 scanners to image FBP, 27 different scanner
odels have been used in ADNI, which could confound some of these

ffects since SUV can be dependent on the scanner used. It could also
ndicate that some age effects are still present in the composite reference
egion. Nevertheless, those results indicate that the composite reference
s more stable over time, and therefore more suitable than WCb for FBP
ormalisation. 

The choice of reference region had a strong impact on the CL quan-
ification of FBP images, with the ICC between CL WCb and CL Comp being
nly 0.92 for both CapAIBL and SPM. The ICC was much higher ( ∼0.98)
hen using NMF, indicating that NMF is quite robust irrespective of the

hoice of reference region. This is expected as the NMF model is fitted
o the entire image and will therefore suffer less bias due to the intensity
ormalisation method. 

In the head-to-head comparison, the use of CL Comp for FBP did not
educe the bias, but improved the agreement between PiB and FBP,
ith higher ICC when using the standard SPM or CapAIBL quantification
ipeline. It also improved the agreement between both tracers in clas-
ifying A 𝛽+ from A 𝛽-. There was also a systematic improvement in the
orrelation of CL with MMSE when using CL Comp compared to CL Raw 

, as
ell as an increase in the effect size between HC and AD. These results

ndicate that using the composite WM + WCb reference region might im-
rove the accuracy of FBP quantification in cross-sectional analysis. 

In the longitudinal analysis, the results were in line with previous
eports ( Landau et al., 2015 ), showing that the use of the composite
M + WCb reference region generally reduced the number of outliers

nd the fitting error, especially in the A 𝛽+ , as well as increasing the
orrelation between the rate of change and baseline CL. 

Given the existing concerns with regards to using a reference region
ontaining WM, we conducted further analysis testing a GM reference
egion using the cerebellum cortex (Cb). These results showed that the
BP SUV in the Cb was significantly correlated with age in both AIBL
nd ADNI (Suppl. Fig. 8). Using the Cb also led to a worse ICC in the
ead-to-head comparison compared to using WCb (Suppl. Fig. 9). In the
9 
ongitudinal analysis, it also led to a larger number of outliers (Suppl.
ables 6 and 7) and worse Spearman correlation when comparing base-

ine CL against its rate of change (Suppl. Fig. 10). 

.3. Quantification methods 

In all cross-sectional analysis, the results obtained using both SPM
nd CapAIBL were often comparable, with no quantification pipeline
learly outperforming the other. Neither quantification pipeline showed
 strong benefit from the uniform resolution smoothing, while both
howed a benefit from the use of the composite WM + WCb reference
egion for FBP. In the longitudinal analysis, while CapAIBL had fewer
utliers in the A 𝛽-, SPM had fewer outliers in the A 𝛽+ . This is likely due
o the CapAIBL adaptive atlas only containing healthy controls, which
ight limit its ability to properly model AD cases with high CL values

nd lead to sub-optimal spatial normalisation. This was however not re-
ected in the correlation of baseline CL against its rate of change where
apAIBL generally had a higher correlation compared to SPM. 

In all experiments, both cross-sectionally and longitudinally, the
MF systematically outperformed its baseline method. In the cross-

ectional analysis, it led to the highest ICC between PiB and FBP in the
ead-to-head comparison, and the highest inter-tracer agreement when
lassifying A 𝛽+ from A 𝛽-. It also led to the strongest correlation with
MSE and highest effect-size between HC and AD. In the longitudinal

nalysis it also had the lowest number of outliers, and the strongest cor-
elation between baseline CL against its rate of change. While there were
mall differences between SPM-NMF and CapAIBL-NMF, both versions
erformed similarly well. 

.4. Recommendations 

These results indicate that while the smoothing to a uniform res-
lution can reduce the number of outliers in longitudinal studies, its
mpact on harmonisation appears to be quite limited, and in some cases
etrimental to some metrics. Because of the overhead involved with ac-
uiring a Hoffman phantom and smoothing the data, we do not consider
moothing the images to a uniform resolution as a strong requirement
or longitudinal studies. While this statement is valid for the studies con-
idered, it should be noted that such advice might differ with the intro-
uction of high-resolution scanners such as the Siemens Biograph Vision
ET/CT, where significant differences in resolution and partial volume
ffect may have a stronger impact on the quantification. It should also
e noted that the Centiloid neocortical mask is quite large and includes a
arge proportion of partial volume voxels. The results might therefore be
ifferent if a MR-based parcellation was used to define the neocortical
ask, as it might be more susceptible to partial volume effects. 

While previous studies have only recommended the use of the com-
osite reference region for longitudinal studies using FBP, these results
ndicate that it also improves agreement with PIB in the head-to-head
tudy, improves correlation with MMSE and increase the HC-AD effect
ize. The longitudinal analysis also confirmed that it reduces the num-
er of outliers, decreases the fitting error and improves the correlation
etween baseline CL and its rate of change. These results indicate that
he composite reference region should be used to normalise FBP images
ot only in longitudinal, but also in cross-sectional analysis when using
PM or CapAIBL. It should however be noted that the results presented
n this study were obtained without partial volume correction (PVC)
nd recent work indicate that PVC could improve FBP quantification
hen using the Cb or WCb ( López-González et al., 2019 ). Therefore,
ur recommendation does not apply to methods that use partial volume
orrection. When using the NMF, there was no systematic benefit from
sing the composite reference region. 

In this study, SPM and CapAIBL had similar performances both cross-
ectionally and longitudinally. Since CapAIBL does not need a matching
RI to perform the quantification, it can be run on a larger set of data
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n studies where the MR is missing, and therefore could become the pre-
erred analysis method since it allows an increase in the number of im-
ges that can be quantified, especially in AIBL where 20% of the subjects
ere unable to undergo an MRI. The NMF proved to be more versatile

ool as it could improve the quantification of both CapAIBL and SPM on
ll the metrics used both cross-sectionally and longitudinally. We would
herefore recommend using this method for any future analysis relying
n SPM or CapAIBL. 

The NMF code and models used in this study are available at
0.25919/5f8400a0b6a1e. 

.5. Limitations 

While we looked at reducing the effect of different PET scanner reso-
ution by smoothing the images to a lower resolution, we did not investi-
ate how PVC could be used to achieve a similar goal. While smoothing
o a uniform resolution is a fairly standard procedure, there is a wide
ange of techniques for PVC which can lead to quite different quantifi-
ation results ( Schwarz et al., 2019 ). PVC would also preclude the use
f NMF in our study’s framework, as it would require perfect matching
f the cortical GM across patients, which the current pipeline based on
PM does not provide. Therefore, the potential gains from using PVC
ould need to outperform the clear benefits that we’ve demonstrated
y using NMF. While such comparison would be valuable, it is outside
he scope of this paper. 

Another limitation of our evaluation is that we used the same Cen-
iloid transforms for both raw and uniformly FWHM smoothed PET
ata, which could introduce a bias in the analysis as the transforms de-
ived from the raw calibration data are not optimal for the uniformly
moothed data. Deriving a new transform for uniformly smoothed data
s not possible using the existing calibration dataset as they do not
ave phantom data. An alternative could be to use an external dataset
o recalibrate the Centiloid, but this would require a large number of
aired scans for all tracer which is currently not available in our study.
he application of the FWHM smoothing was also performed uniformly
hroughout the brain when the resolution is known to vary across the
eld of view and depending on the type of reconstruction used. Fu-
ure studies should seek to estimate and apply spatially varying image
moothing which could improve the accuracy of the uniform resolution
armonization step. 

We also did not investigate the use of different reference regions for
he other tracers, noting that for quantification using SUVR, the cere-
ellar cortex is typically the prescribed reference region for PiB, NAV
nd FBB, and the pons for FLUTE. There is however little literature in-
icating the inadequacy of using the whole cerebellum for these tracers,
ompared to the well documented issues with longitudinal FBP, and our
nalysis of the stability of the SUV in the reference region over time
upports these conclusions. That said, one interesting finding from the
urrent study was to show that the NMF was relatively robust irrespec-
ive of the choice of reference region, and while it was only tested on
BP, and only two reference regions were compared, we do expect these
esults to generalise to other tracers and reference regions. This would
owever need to be confirmed in further studies. 

Similarly to our previous work ( Bourgeat et al., 2021 ), our longitu-
inal validation relies on the assumption that A 𝛽 accumulation is linear
ver a period < 10 years, when the accumulation is believed to follow
rajectory close to a sigmoid ( Villemagne et al., 2013 ). However, half of
he participants had their last timepoints within 3.3 years for AIBL, 3.9
or ADNI and 5.0 for OASIS, a fairly short timeframe where changes can
e approximated as linear. For participants scanned over a longer period
f time, 54% of AIBL participants, 43% of ADNI and 68% of OASIS had
 CL remaining bellow 10, meaning that they had very little changes
ver time. 

Lastly, it should be noted that all our validation experiments rely
n surrogate markers, and while NMF improves on all of them, it does
ot necessarily mean that the method is more accurate. Further eval-
10 
ation of all quantification methods using actual ground truth data
uch as autopsy (although this is not viable in large studies), phan-
oms (although those are often unrealistic) and Monte Carlo simulations
 López-González et al,. 2019 ; Paredes-Pacheco et al., 2021 ) is there-
ore warranted. We have also limited this analysis to two quantification
ipelines, which was again done for the sake of clarity. More quantifi-
ation pipeline could be included in further studies now that the impact
f the pre-processing steps has been clarified. 

. Conclusions 

With the availability of large imaging datasets, data harmonisation
as become an important topic not only for combining multiple stud-
es, but also to ensure that the findings can be replicated in the clinic
here different PET tracers and scanners might be used. In this study, we
uantified the impact that each pre-processing step can have on the final
ET quantification, and its consistency over time. We also compared two
tate of the art PET quantification methods and demonstrated that NMF
an further reduce inter-tracer differences, improve concordance with
ognitive measures and separation between HC and AD as well as re-
uce variability over time. These improvements will help detect smaller
ariations in the dynamics of A 𝛽 accumulation and better relate those
o genetic, lifestyle and cognitive differences, leading to a better under-
tanding of the progression of AD and its risk factors. Improving the
etection of small changes of A 𝛽 over time, will improve the sensitivity
o detect the effects of anti-A 𝛽 therapy. 
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